Chemical Pretreatment Methods for Oil Palm Empty Fruit Bunches: A Key Pathway to Unlocking Lignocellulose Value

In the context of energy and materials transformation, the high-value utilization of lignocellulosic waste has become a research hotspot. Oil palm empty fruit bunches (OPEFB), as a major byproduct of the oil palm industry, have great development potential due to their rich lignocellulosic components that can be converted into biofuels or cellulose fibers. However, the complex three-dimensional structure of lignocellulose, particularly the content and distribution of lignin, greatly limits its degradation efficiency. Therefore, pretreatment is a crucial step in unlocking its value. Various pretreatment methods exist for oil palm empty fruit bunches, encompassing biological, physical, chemical, and physicochemical approaches. Among these, chemical pretreatment, due to its stable delignification efficiency and wide applicability, has become the most commonly used technical route. It mainly includes alkaline pretreatment, dilute acid pretreatment, and organic solvent delignification. Different methods have their own characteristics, and combinations of multiple methods can achieve efficient delignification. Alkaline pretreatment is one of the most widely used methods in the chemical pretreatment of oil palm empty fruit bunches. Its core principle is to break the ester bonds between lignin and hemicellulose using alkaline reagents, promoting the depolymerization and dissolution of lignin, while simultaneously removing some hemicellulose. This exposes the cellulose structure and improves the accessibility for subsequent enzymatic hydrolysis. Commonly used alkaline reagents include sodium hydroxide and potassium hydroxide. Potassium hydroxide is particularly suitable because it aligns with the high potassium content of oil palm empty fruit bunches, enabling nutrient recycling. The advantages of this method are relatively mild reaction conditions, minimal damage to cellulose, and good preservation of the target product yield, making it suitable for large-scale application in biofuel production.

23 views | Business | Submitted: January 15, 2026
Click to Visit Site